Saturday, January 19, 2008

Can GPS Replace Compass

There was a time that the only way campers who got lost could make it out of the wilderness was by using a compass. This device doesn’t run on batteries, it works by aligning itself with the magnetic field of the earth.

Nowadays, something much better is available. This is the global positioning satellite receiver that can tell the exact location of the user and how to get back home. This device is much bigger than the compass but given the performance for the military, it is no wonder that consumers are buying this for personal use.

The question then is, which of these two are better? People who decide to use a compass have to be trained in navigation. Together with a map, plots are set so the group will be able to stay on course.

It takes time to learn this so those who are impatient won't be going on any camping trips. Fortunately, you can still go thanks to the wonders of GPS. This device has an onboard computer. It will do all the navigating so all you have to do is glance at the screen while walking through the woods. The more advanced units have voice alert systems and a touch screen pads.

There are two problems with having a GPS.

Both of these instruments can work in almost any weather condition. But the user may not get signals from satellites up in space because of the landscape. This is similar to how cellphones work in certain places. When this happens, it becomes useless. The only thing to do is to keep walking until it has been reestablished.

Second, these things run on batteries. It doesn’t do any good to bring this along if the device wasn't charged and it dies suddenly. There is no place to plug in the charger so everyone is screwed.

What of the two is the best then? There is no definite answer to this one. It has pros and cons but people who go hiking often suggest that campers should always bring both. If the high tech version doesn't work, there is always the reserve.

It will take time for rescuers to find the group and having these as part of the equipment will increase the chances of getting out alive. Both are available in specialty stores and online. These should be checked to ensure they are working properly.

Playing Around with GPS

Some children have grown up with the notion of finding treasure buried by pirates many years ago. When the kids are old enough, the parents buy a metal detector then go searching for stuff on the beach or in other places.

So far, no one has been able to find a treasure chest using such equipment. Instead of seeking fortune, there are those who do this for fun. The name of the game is geocaching in which one person will hide a few items, give a few clues and let others find it. Once it is discovered, the finder will then change and replace a few things and the hunt starts all over again.

Geocaching isn't something new that developed because of the global positioning satellite or GPS. This game has been going on for more than 150 years and the introduction of new technology has simply taken it to a new level.

There are different ways by which people can play the game. A series of clues could lead the searches to a number of caches until the actual prize has been discovered. This will not only involve looking at the GPS unit but sometimes solving a puzzle because there isn't any challenge by just getting a fix on the location.

There are certain rules that players have to follow in the game. For instance, a variety of mediums are permitted to be used in giving out clues. Some examples are internet, SMS messaging, stamps, landmarks and anything else that may come to mind.

Once the cache has been found, the person should log one's name, the date and time it was discovered. In the event that the item can't be taken out, simply taking a picture is enough to determine who is the winner.

There are a lot of organizations that sponsor Geocaching such as the Geological Society of America. Smaller ones will offer free memberships while others will ask for a small fee.

You can work alone or in groups when looking for the prize. The most important thing to have of course is the GPS receiver because without it, other people will be able to find it first.

In the end, this is just for fun. The chances of finding some long lost treasure worth millions probably won't happen so those who are thinking of doing this shouldn't even bother.

Stay Fit with GPS Units

The global positioning satellite or GPS can do more than just prevent someone from getting lost. Studies have shown that this technology can make people stay in shape by building one's endurance.

This happens by purchasing a watch that has GPS as one of its features. The basic ones act like regular watches because all it has is a timer. A good example of this is the Garmin Forerunner 101 and the Navman 2.

Those who prefer the more advanced ones can monitor the heart rate and measure the mileage run or jogged like the kind seen in the Garmin Forerunner 201. One of the best things it has it is the ability to store daily logs for more than two years. This can help athletes and fitness enthusiasts develop a program that will cater to their needs.

There are different methods to make this happen.
  • The first is by setting a distance that has to be achieved. There is no time pressure here. The important thing is to complete it and then add another mile or two after a few weeks.
  • This goes to the second method which involves timing. You may be able to run 10 miles but races are won by those who are able to finish it the fastest.
  • Those who have endurance can work on speed. Athletes should have a strong start, maintain a certain pace and then finish strong in the end. This has to be perfected regardless if the marathon is done in the city or cross country.
  • The first two methods are effective for those who compete. But for those who can't start quickly like the other runners or are doing this to lose weight, the third method of being able to maintain a certain speed together and heart rate is enough to make anyone stay in shape.

Commercial Uses of GPS

Ever since GPS technology was made available to the public, more and more people are beginning to use it for personal and commercial use. We all know what it can do for those who want to get somewhere, it is time to discuss what is can do for the different sectors.

Engineers can use GPS technology to survey an area of land and determine if it is ideal to construct a residential or commercial structure.

Meteorologists better known as the weathermen can predict accurately if the temperature in the valley for example will be cool or hot. It is very embarrassing to say it is going to be sunny when it happens to be cloudy the whole day.

Emergency crews also use GPS to get the scene of an accident. Once someone dials 911, the dispatcher can alert the nearest fire, police or medical units into the vicinity until backup arrives.

Some photographers also use GPS to get the perfect shot with a digital camera. This takes a bit of practice especially when these photos will be used in a magazine.

Earthquakes have occurred for centuries. Years ago, scientists could only guess the epicenter but thanks to GPS technology, it can determine the exact location and the moment it happens. This is very useful in warning people who live in the coastal regions that may be affected by a tsunami.

Aircraft once operated on the principle of fly by wire. The invention of radar changed all that and GPS systems help air traffic controllers and pilots determine the location of the plane while it's in midair. The same thing goes for ships at sea that will be able to respond to distress calls within a designated area.

The military, which were the pioneers of GPS technology, have used this in many ways. It allows commanders to asses the battlefield; units both on the ground and the air to work on a combined assault and most of all employ the use of smart bombs and other weapons to decimate a target.

Entrepreneurs who have to deliver goods all over the country can check where the driver is using GPS technology. This is placed on the vehicle and all the boss has to do is look at the screen.

One reason why GPS technology is so popular is because it is free. The government regulates it. All you will have to buy is the hardware and then keep the signal broadcasting.

Techniques to Improve Accuracy --- GPS Modernization

Having reached the program's requirements for Full Operational Capability (FOC) on July 17, 1995, the GPS completed its original design goals. However, additional advances in technology and new demands on the existing system led to the effort to modernize the GPS system. Announcements from the Vice President and the White House in 1998 initiated these changes, and in 2000 the U.S. Congress authorized the effort, referring to it as GPS III.

The project aims to improve the accuracy and availability for all users and involves new ground stations, new satellites, and four additional navigation signals. New civilian signals are called L2C, L5 and L1C; the new military code is called M-Code. Initial Operational Capability (IOC) of the L2C code is expected in 2008. A goal of 2013 has been established for the entire program, with incentives offered to the contractors if they can complete it by 2011.

Techniques to Improve Accuracy --- GPS Time and Date

While most clocks are synchronized to Coordinated Universal Time (UTC), the atomic clocks on the satellites are set to GPS time. The difference is that GPS time is not corrected to match the rotation of the Earth, so it does not contain leap seconds or other corrections which are periodically added to UTC. GPS time was set to match Coordinated Universal Time (UTC) in 1980, but has since diverged. The lack of corrections means that GPS time remains at a constant offset (19 seconds) with International Atomic Time (TAI). Periodic corrections are performed on the on-board clocks to correct relativistic effects and keep them synchronized with ground clocks.

The GPS navigation message includes the difference between GPS time and UTC, which as of 2007 is 14 seconds. Receivers subtract this offset from GPS time to calculate UTC and specific timezone values. New GPS units may not show the correct UTC time until after receiving the UTC offset message. The GPS-UTC offset field can accommodate 255 leap seconds (eight bits) which, at the current rate of change of the Earth's rotation, is sufficient to last until the year 2330.

As opposed to the year, month, and day format of the Gregorian calendar, the GPS date is expressed as a week number and a day-of-week number. The week number is transmitted as a ten-bit field in the C/A and P(Y) navigation messages, and so it becomes zero again every 1,024 weeks (19.6 years). GPS week zero started at 00:00:00 UTC (00:00:19 TAI) on January 6, 1980 and the week number became zero again for the first time at 23:59:47 UTC on August 21, 1999 (00:00:19 TAI on August 22, 1999). To determine the current Gregorian date, a GPS receiver must be provided with the approximate date (to within 3,584 days) to correctly translate the GPS date signal. To address this concern the modernized GPS navigation messages use a 13-bit field, which only repeats every 8,192 weeks (157 years), and will not return to zero until near the year 2137.

Techniques to Improve Accuracy --- Precise Monitoring

The accuracy of a calculation can also be improved through precise monitoring and measuring of the existing GPS signals in additional or alternate ways.

After SA, which has been turned off, the largest error in GPS is usually the unpredictable delay through the ionosphere. The spacecraft broadcast ionospheric model parameters, but errors remain. This is one reason the GPS spacecraft transmit on at least two frequencies, L1 and L2. Ionospheric delay is a well-defined function of frequency and the total electron content (TEC) along the path, so measuring the arrival time difference between the frequencies determines TEC and thus the precise ionospheric delay at each frequency.

Receivers with decryption keys can decode the P(Y)-code transmitted on both L1 and L2. However, these keys are reserved for the military and "authorized" agencies and are not available to the public. Without keys, it is still possible to use a codeless technique to compare the P(Y) codes on L1 and L2 to gain much of the same error information. However, this technique is slow, so it is currently limited to specialized surveying equipment. In the future, additional civilian codes are expected to be transmitted on the L2 and L5 frequencies (see GPS modernization, below). Then all users will be able to perform dual-frequency measurements and directly compute ionospheric delay errors.

A second form of precise monitoring is called Carrier-Phase Enhancement (CPGPS). The error, which this corrects, arises because the pulse transition of the PRN is not instantaneous, and thus the correlation (satellite-receiver sequence matching) operation is imperfect. The CPGPS approach utilizes the L1 carrier wave, which has a period 1000 times smaller than that of the C/A bit period, to act as an additional clock signal and resolve the uncertainty. The phase difference error in the normal GPS amounts to between 2 and 3 meters (6 to 10 ft) of ambiguity. CPGPS working to within 1% of perfect transition reduces this error to 3 centimeters (1 inch) of ambiguity. By eliminating this source of error, CPGPS coupled with DGPS normally realizes between 20 and 30 centimeters (8 to 12 inches) of absolute accuracy.

Relative Kinematic Positioning (RKP) is another approach for a precise GPS-based positioning system. In this approach, determination of range signal can be resolved to an accuracy of less than 10 centimeters (4 in). This is done by resolving the number of cycles in which the signal is transmitted and received by the receiver. This can be accomplished by using a combination of differential GPS (DGPS) correction data, transmitting GPS signal phase information and ambiguity resolution techniques via statistical tests—possibly with processing in real-time (real-time kinematic positioning, RTK).

Techniques to Improve Accuracy --- Augmentation

Augmentation methods of improving accuracy rely on external information being integrated into the calculation process. There are many such systems in place and they are generally named or described based on how the GPS sensor receives the information. Some systems transmit additional information about sources of error (such as clock drift, ephemeris, or ionospheric delay), others provide direct measurements of how much the signal was off in the past, while a third group provide additional navigational or vehicle information to be integrated in the calculation process.

Examples of augmentation systems include the Wide Area Augmentation System, Differential GPS, Inertial Navigation Systems and Assisted GPS.

GPS Interference and Jamming --- Artificial Sources

Man-made interference can also disrupt, or jam, GPS signals. In one well documented case, an entire harbor was unable to receive GPS signals due to unintentional jamming caused by a malfunctioning TV antenna preamplifier. Intentional jamming is also possible. Generally, stronger signals can interfere with GPS receivers when they are within radio range, or line of sight. In 2002, a detailed description of how to build a short range GPS L1 C/A jammer was published in the online magazine Phrack.

The U.S. government believes that such jammers were used occasionally during the 2001 war in Afghanistan and the U.S. military claimed to destroy a GPS jammer with a GPS-guided bomb during the Iraq War. Such a jammer is relatively easy to detect and locate, making it an attractive target for anti-radiation missiles. The UK Ministry of Defence tested a jamming system in the UK's West Country on 7 and 8 June 2007.

Some countries allow the use of GPS repeaters to allow for the reception of GPS signals indoors and in obscured locations, however, under EU and UK laws, the use of these is prohibited as the signals can cause interference to other GPS receivers that may receive data from both GPS satellites and the repeater.

Due to the potential for both natural and man-made noise, numerous techniques continue to be developed to deal with the interference. The first is to not rely on GPS as a sole source. According to John Ruley, "IFR pilots should have a fallback plan in case of a GPS malfunction". Receiver Autonomous Integrity Monitoring (RAIM) is a feature now included in some receivers, which is designed to provide a warning to the user if jamming or another problem is detected. The U.S. military has also deployed their Selective Availability / Anti-Spoofing Module (SAASM) in the Defense Advanced GPS Receiver (DAGR). In demonstration videos, the DAGR is able to detect jamming and maintain its lock on the encrypted GPS signals during interference which causes civilian receivers to lose lock.

GPS Interference and Jamming --- Natural Sources

Since GPS signals at terrestrial receivers tend to be relatively weak, it is easy for other sources of electromagnetic radiation to desensitize the receiver, making acquiring and tracking the satellite signals difficult or impossible.

Solar flares are one such naturally occurring emission with the potential to degrade GPS reception, and their impact can affect reception over the half of the Earth facing the sun. GPS signals can also be interfered with by naturally occurring geomagnetic storms, predominantly found near the poles of the Earth's magnetic field. GPS signals are also subjected to interference from Van Allen Belt radiation when satellites pass through the South Atlantic Anomaly. Another source of problems is the metal embedded in some car windscreens to prevent icing, degrading reception just inside the car.

Accuracy and error sources --- Sagnac Distortion

GPS observation processing must also compensate for the Sagnac effect. The GPS time scale is defined in an inertial system but observations are processed in an Earth-centered, Earth-fixed (co-rotating) system, a system in which simultaneity is not uniquely defined. A Lorentz transformation is thus applied to convert from the inertial system to the ECEF system. The resulting signal run time correction has opposite algebraic signs for satellites in the Eastern and Western celestial hemispheres. Ignoring this effect will produce an east-west error on the order of hundreds of nanoseconds, or tens of meters in position.

Accuracy and error sources --- Relativity

According to the theory of relativity, due to their constant movement and height relative to the Earth-centered inertial reference frame, the clocks on the satellites are affected by their speed (special relativity) as well as their gravitational potential (general relativity). For the GPS satellites, general relativity predicts that the atomic clocks at GPS orbital altitudes will tick more rapidly, by about 45.9 microseconds (μs) per day, because they are in a weaker gravitational field than atomic clocks on Earth's surface. Special relativity predicts that atomic clocks moving at GPS orbital speeds will tick more slowly than stationary ground clocks by about 7.2 μs per day. When combined, the discrepancy is about 38 microseconds per day; a difference of 4.465 parts in 1010. To account for this, the frequency standard onboard each satellite is given a rate offset prior to launch, making it run slightly slower than the desired frequency on Earth; specifically, at 10.22999999543 MHz instead of 10.23 MHz. Since the atomic clocks on board the GPS satellites are precisely tuned, it makes the system a practical engineering application of the scientific theory of relativity in a real-world environment.

Accuracy and error sources --- Selective Availability

GPS includes a (currently disabled) feature called Selective Availability (SA) that can introduce intentional, slowly changing random errors of up to a hundred meters (328 ft) into the publicly available navigation signals to confound, for example, guiding long range missiles to precise targets. When enabled, the accuracy is still available in the signal, but in an encrypted form that is only available to the United States military, its allies and a few others, mostly government users. Even those who have managed to acquire military GPS receivers would still need to obtain the daily key, whose dissemination is tightly controlled.

Prior to being turned off, SA typically added signal errors of up to about 10 meters (32 ft) horizontally and 30 meters (98 ft) vertically. The inaccuracy of the civilian signal was deliberately encoded so as not to change very quickly. For instance, the entire eastern U.S. area might read 30 m off, but 30 m off everywhere and in the same direction. To improve the usefulness of GPS for civilian navigation, Differential GPS was used by many civilian GPS receivers to greatly improve accuracy.

During the Gulf War, the shortage of military GPS units and the ready availability of civilian ones caused many troops to buy their own civilian GPS units: their wide use among personnel resulted in a decision to disable Selective Availability. This was ironic, as SA had been introduced specifically for these situations, allowing friendly troops to use the signal for accurate navigation, while at the same time denying it to the enemy—but the assumption underlying this policy was that all U.S. troops and enemy troops would have military-specification GPS receivers and that civilian receivers would not exist in war zones. But since many American soldiers were using civilian devices, SA was also denying the same accuracy to thousands of friendly troops; turning it off (by removing the added-in error) presented a clear benefit to friendly troops.

In the 1990s, the FAA started pressuring the military to turn off SA permanently. This would save the FAA millions of dollars every year in maintenance of their own radio navigation systems. The military resisted for most of the 1990s, and it ultimately took an executive order to have SA removed from the GPS signal. The amount of error added was "set to zero" at midnight on May 1, 2000 following an announcement by U.S. President Bill Clinton, allowing users access to the error-free L1 signal. Per the directive, the induced error of SA was changed to add no error to the public signals (C/A code). Clinton's executive order required SA to be set to zero by 2006; it happened in 2000.

Selective Availability is still a system capability of GPS, and error could, in theory, be reintroduced at any time. In practice, in view of the hazards and costs this would induce for US and foreign shipping, it is unlikely to be reintroduced, and various government agencies, including the FAA, have stated that it is not intended to be reintroduced.

The US military has since developed a new system that provides the ability to deny GPS (and other navigation services) to hostile forces in a specific area of crisis without affecting the rest of the world or its own military systems.

One interesting side effect of the Selective Availability hardware is the capability to correct the frequency of the GPS cesium and rubidium atomic clocks to an accuracy of approximately 2 × 10-13 (one in five trillion). This represented a significant improvement over the raw accuracy of the clocks.

On 19 September 2007, the United States Department of Defense announced that they would not procure any more satellites capable of implementing SA.

Accuracy and error sources --- Ephemeris and clock errors

While the ephemeris data is transmitted every 30 seconds, the information itself may be up to two hours old. Data up to four hours old is considered valid for calculating positions, but may not indicate the satellites actual position.

The satellite's atomic clocks experience noise and clock drift errors. The navigation message contains corrections for these errors and estimates of the accuracy of the atomic clock; however they are based on observations and may not indicate the clock's current state.

These problems tend to be very small, but may add up to a few meters (10s of feet) of inaccuracy.

Accuracy and error sources --- Multipath effects

GPS signals can also be affected by multipath issues, where the radio signals reflect off surrounding terrain; buildings, canyon walls, hard ground, etc. These delayed signals can cause inaccuracy. A variety of techniques, most notably narrow correlator spacing, have been developed to mitigate multipath errors. For long delay multipath, the receiver itself can recognize the wayward signal and discard it. To address shorter delay multipath from the signal reflecting off the ground, specialized antennas (e.g. a choke ring antenna) may be used to reduce the signal power as received by the antenna. Short delay reflections are harder to filter out because they interfere with the true signal, causing effects almost indistinguishable from routine fluctuations in atmospheric delay.

Multipath effects are much less severe in moving vehicles. When the GPS antenna is moving, the false solutions using reflected signals quickly fail to converge and only the direct signals result in stable solutions.

Accuracy and error sources --- Atmospheric effects

Inconsistencies of atmospheric conditions affect the speed of the GPS signals as they pass through the Earth's atmosphere, especially the ionosphere. Correcting these errors is a significant challenge to improving GPS position accuracy. These effects are smallest when the satellite is directly overhead and become greater for satellites nearer the horizon since the path through the atmosphere is longer (see air mass). Once the receiver's approximate location is known, a mathematical model can be used to estimate and compensate for these errors.

Because ionospheric delay affects the speed of microwave signals differently depending on their frequency — a characteristic known as dispersion - delays measured on two more frequency bands can be used to measure dispersion, and this measurement can be then be used to estimate the delay at each frequency. Some military and expensive survey-grade civilian receivers measure the different delays in the L1 and L2 frequencies to measure atmospheric dispersion, and apply a more precise correction. This can be done in civilian receivers without decrypting the P(Y) signal carried on L2, by tracking the carrier wave instead of the modulated code. To facilitate this on lower cost receivers, a new civilian code signal on L2, called L2C, was added to the Block IIR-M satellites, which was first launched in 2005. It allows a direct comparison of the L1 and L2 signals using the coded signal instead of the carrier wave.

The effects of the ionosphere generally change slowly, and can be averaged over time. The effects for any particular geographical area can be easily calculated by comparing the GPS-measured position to a known surveyed location. This correction is also valid for other receivers in the same general location. Several systems send this information over radio or other links to allow L1-only receivers to make ionospheric corrections. The ionospheric data are transmitted via satellite in Satellite Based Augmentation Systems such as WAAS, which transmits it on the GPS frequency using a special pseudo-random noise sequence (PRN), so only one receiver and antenna are required.

Humidity also causes a variable delay, resulting in errors similar to ionospheric delay, but occurring in the troposphere. This effect both is more localized and changes more quickly than ionospheric effects, and is not frequency dependent. These traits make precise measurement and compensation of humidity errors more difficult than ionospheric effects.

Changes in receiver altitude also change the amount of delay, due to the signal passing through less of the atmosphere at higher elevations. Since the GPS receiver computes its approximate altitude, this error is relatively simple to correct, either by applying a function regression or correlating margin of atmospheric error to ambient pressure using a barometric altimeter.

Accuracy and error sources

The position calculated by a GPS receiver requires the current time, the position of the satellite and the measured delay of the received signal. The position accuracy is primarily dependent on the satellite position and signal delay.

To measure the delay, the receiver compares the bit sequence received from the satellite with an internally generated version. By comparing the rising and trailing edges of the bit transitions, modern electronics can measure signal offset to within about 1% of a bit time, or approximately 10 nanoseconds for the C/A code. Since GPS signals propagate at the speed of light, this represents an error of about 3 meters. This is the minimum error possible using only the GPS C/A signal.

Position accuracy can be improved by using the higher-chiprate P(Y) signal. Assuming the same 1% bit time accuracy, the high frequency P(Y) signal results in an accuracy of about 30 centimeters.

Electronics errors are one of several accuracy-degrading effects outlined in the table below. When taken together, autonomous civilian GPS horizontal position fixes are typically accurate to about 15 meters (50 ft). These effects also reduce the more precise P(Y) code's accuracy.

Calculating positions using the P(Y) code

Calculating a position with the P(Y) signal is generally similar in concept, assuming one can decrypt it. The encryption is essentially a safety mechanism: if a signal can be successfully decrypted, it is reasonable to assume it is a real signal being sent by a GPS satellite. In comparison, civil receivers are highly vulnerable to spoofing since correctly formatted C/A signals can be generated using readily available signal generators. RAIM features do not protect against spoofing, since RAIM only checks the signals from a navigational perspective.

Calculating positions using the C/A code

To start off, the receiver picks which C/A codes to listen for by PRN number, based on the almanac information it has previously acquired. As it detects each satellite's signal, it identifies it by its distinct C/A code pattern, then measures the received time for each satellite. To do this, the receiver produces an identical C/A sequence using the same seed number, referenced to its local clock, starting at the same time the satellite sent it. It then computes the offset to the local clock that generates the maximum correlation. This offset is the time delay from the satellite to the receiver, as told by the receiver's clock. Since the PRN repeats every millisecond, this offset is precise but ambiguous, and the ambiguity is resolved by looking at the data bits, which are sent at 50 Hz (20 ms) and aligned with the PRN code.

This data is used to solve for x,y,z and t. Many mathematical techniques can be used. The following description shows a straightforward iterative way, but receivers use more sophisticated methods. (see below)

Conceptually, the receiver calculates the distance to the satellite, called the pseudorange.

Overlapping pseudoranges, represented as curves, are modified to yield the probable position

Next, the orbital position data, or ephemeris, from the Navigation Message is then downloaded to calculate the satellite's precise position. A more-sensitive receiver will potentially acquire the ephemeris data more quickly than a less-sensitive receiver, especially in a noisy environment. Knowing the position and the distance of a satellite indicates that the receiver is located somewhere on the surface of an imaginary sphere centered on that satellite and whose radius is the distance to it. Receivers can substitute altitude for one satellite, which the GPS receiver translates to a pseudorange measured from the center of the Earth.

When pseudoranges have been determined for four satellites, a guess of the receiver's location is calculated. Dividing the speed of light by the distance adjustment required to make the pseudoranges come as close as possible to intersecting results in a guess of the difference between UTC and the time indicated by the receiver's on-board clock. With each combination of four satellites, a geometric dilution of precision (GDOP) vector is calculated, based on the relative sky positions of the satellites used. As more satellites are picked up, pseudoranges from more combinations of four satellites can be processed to add more guesses to the location and clock offset. The receiver then determines which combinations to use and how to calculate the estimated position by determining the weighted average of these positions and clock offsets. After the final location and time are calculated, the location is expressed in a specific coordinate system, e.g. latitude/longitude, using the WGS 84 geodetic datum or a local system specific to a country.

There are many other alternatives and improvements to this process. If at least 4 satellites are visible, for example, the receiver can eliminate time from the equations by computing only time differences, then solving for position as the intersection of hyperboloids. Also, with a full constellation and modern receivers, more than 4 satellites can be seen and received at once. Then all satellite data can be weighted by GDOP, signal to noise, path length through the ionosphere, and other accuracy concerns, and then used in a least squares fit to find a solution. In this case the residuals also give an estimate of the errors. Finally, results from other positioning systems such as GLONASS or the upcoming Galileo can be used in the fit, or used to double-check the result. (By design, these systems use the same bands, so much of the receiver circuitry can be shared, though the decoding is different).

Navigation Signals

Each GPS satellite continuously broadcasts a Navigation Message at 50 bit/s giving the time-of-day, GPS week number and satellite health information, an ephemeris and an almanac. The messages are sent in frames, each taking 30 seconds to transmit 1500 bits.

The first 6 seconds of every frame contains data describing the satellite clock and its relationship to GPS system time. The next 12 seconds contain the ephemeris data, giving the satellite's own precise orbit. The ephemeris is updated every 2 hours and is generally valid for 4 hours, with provisions for updates every 6 hours or longer in non-nominal conditions. The time needed to acquire the ephemeris is becoming a significant element of the delay to first position fix, because, as the hardware becomes more capable, the time to lock onto the satellite signals shrinks, but the ephemeris data requires 30 seconds before it is received, due to the low data transmission rate.

The almanac consists of coarse orbit and status information for each satellite in the constellation, and information to relate GPS derived time to Coordinated Universal Time (UTC). A new part of the almanac is received for the last 12 seconds in each 30 second frame. Each frame contains 1/25th of the almanac, so 12.5 minutes are required to receive the entire almanac from a single satellite. Advances in hardware have made the acquisition process much faster thus reducing need for almanac. The corrections are not as accurate as augmentation systems like WAAS or dual frequency receivers. However it is often better than no correction since ionospheric error is the largest error source for a single frequency GPS receiver. An important thing to note about navigation data is that each satellite transmits only its own ephemeris, but transmits an almanac for all satellites.

Each satellite transmits its navigation message with at least two distinct spread spectrum codes: the Coarse / Acquisition (C/A) code, which is freely available to the public, and the Precise (P) code, which is usually encrypted and reserved for military applications. The C/A code is a 1,023 chip pseudo-random (PRN) code at 1.023 million chips/sec so that it repeats every millisecond. Each satellite has its own C/A code so that it can be uniquely identified and received separately from the other satellites transmitting on the same frequency. The P-code is a 10.23 megachip/sec PRN code that repeats only every week. When the "anti-spoofing" mode is on, as it is in normal operation, the P code is encrypted by the Y-code to produce the P(Y) code, which can only be decrypted by units with a valid decryption key. Both the C/A and P(Y) codes impart the precise time-of-day to the user.

Frequencies used by GPS include

  • L1 (1575.42 MHz): Mix of Navigation Message, coarse-acquisition (C/A) code and encrypted precision P(Y) code, plus the new L1C on future Block III satellites.
  • L2 (1227.60 MHz): P(Y) code, plus the new L2C code on the Block IIR-M and newer satellites.
  • L3 (1381.05 MHz): Used by the Nuclear Detonation (NUDET) Detection System Payload (NDS) to signal detection of nuclear detonations and other high-energy infrared events. Used to enforce nuclear test ban treaties.
  • L4 (1379.913 MHz): Being studied for additional ionospheric correction.
  • L5 (1176.45 MHz): Proposed for use as a civilian safety-of-life (SoL) signal (see GPS modernization). This frequency falls into an internationally protected range for aeronautical navigation, promising little or no interference under all circumstances. The first Block IIF satellite that would provide this signal is set to be launched in 2008.

Working of GPS

The GPS network is made of three things namely the satellites, earth monitoring stations and the receivers. There are currently 24 satellites orbiting the earth. These work on the principle of triangulation thus revealing the exact location of the user.

Four satellites are needed since the process needs a very accurate local time, more accurate than any normal clock can provide, so the receiver internally solves for time as well as position. In other words, the receiver uses four measurements to solve for 4 variables - x, y, z, and t. These values are then turned into more user-friendly forms, such as latitude/longitude or location on a map, and then displayed to the user.

Each GPS satellite has an atomic clock, and continually transmits messages containing the current time at the start of the message, parameters to calculate the location of the satellite (the ephemeris), and the general system health (the almanac). The signals travel at a known speed - the speed of light through outer space, and slightly slower through the atmosphere. The receiver uses the arrival time to compute the distance to each satellite, from which it determines the position of the receiver using geometry and trigonometry.

Next is the GPS earth monitoring station. There are currently 4 unmanned stations and 1 master station operating in the US. Those working in the master station receive information from the four and update them regularly so people will always have the necessary data while on the move.

Lastly, is the receiver. This hand held device can be placed on the hood of the car and carried around after disembarking the vehicle. If the unit is able to get signals from three satellites in orbit, it can tell the user the longitude and latitude where you are. This means those that that receive data from four or more will get more information.

Friday, January 18, 2008

What Is Global Positioning System (GPS)

The Global Positioning System (GPS) is the only fully functional Global Navigation Satellite System (GNSS). Utilizing a constellation of at least 24 Medium Earth Orbit satellites that transmit precise microwave signals, the system enables a GPS receiver to determine its location, speed, direction, and time. Other similar systems are the Russian GLONASS (incomplete as of 2007), the upcoming European Galileo positioning system, the proposed COMPASS navigation system of China, and IRNSS of India.

Developed by the United States Department of Defense, GPS is officially named NAVSTAR GPS (Contrary to popular belief, NAVSTAR is not an acronym, but simply a name given by Mr. John Walsh, a key decision maker when it came to the budget for the GPS program). The satellite constellation is managed by the United States Air Force 50th Space Wing. The cost of maintaining the system is approximately US$750 million per year, including the replacement of ageing satellites, and research and development.

Following the shoot down of Korean Air Lines Flight 007 in 1983, President Ronald Reagan issued a directive making the system available for free for civilian use as a common good. Since then, GPS has become a widely used aid to navigation worldwide, and a useful tool for map-making, land surveying, commerce, and scientific uses. GPS also provides a precise time reference used in many applications including scientific study of earthquakes, and synchronization of telecommunications networks.